SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components1
نویسندگان
چکیده
An efficient and highly accurate, Symmetric Galerkin Boundary Element Method Finite Element Method based alternating method, for the analysis of three-dimensional non-planar cracks, and their growth, in structural components of complicated geometries, is proposed. The crack is modeled by the symmetric Galerkin boundary element method, as a distribution of displacement discontinuities, as if in an infinite medium. The finite element method is used to perform the stress analysis for the uncracked body only. The solution for the structural component, containing the crack, is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, and the SGBEM solution for the crack in an infinite body. Numerical procedures, and the attendant Java code, are developed for the evaluation of stress intensity factors, and fatigue crack growth modeling. Examples for non-planar cracks in infinite media, and for planar cracks in finite bodies, as well as their growth under fatigue, demonstrate the accuracy of the method. keyword: SGBEM, FEM, alternating, 3D non-planar crack.
منابع مشابه
Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 2: 3D Solids
The SGBEM-FEM alternating method is compared with the recently popularized XFEM, for analyzing mixed-mode fracture and fatigue growth of 3D nonplanar cracks in complex solid and structural geometries. A large set of 3D examples with different degrees of complexity is analyzed by the SGBEM-FEM alternating method, and the numerical results are compared with those obtained by XFEM available in the...
متن کاملThree-Dimensional SGBEM-FEM Alternating Method for Analyzing Fatigue-Crack Growth in and the Life of Attachment Lugs
In the present paper, stress intensity factor (SIF) analyses and fatigue-crack-growth simulations of corner cracks emanating from loaded pinholes of attachment lugs in structural assemblies are carried out for different load cases. A three-dimensional (3D) symmetric Galerkin boundary-element method (SGBEM) and FEM alternating method is developed to analyze the nonplanar growth of these surface ...
متن کاملSGBEM (for Cracked Local Subdomain) – FEM (for uncracked global Structure) Alternating Method for Analyzing 3D Surface Cracks and Their Fatigue-Growth
As shown in an earlier work, the FEM-BEM alternating method is an efficient and accurate method for fracture analysis. In the present paper, a further improvement is formulated and implemented for the analyses of three-dimensional arbitrary surface cracks by modeling the cracks in a local finite-sized subdomain using the symmetric Galerkin boundary element method (SGBEM). The finite element met...
متن کاملMixed-mode fracture & non-planar fatigue analyses of cracked I-beams, using a 3D SGBEM–FEM Alternating Method
In the present paper, computations of mixed mode stress intensity factor (SIF) variations along the crack front, and fatigue-crack-growth simulations, in cracked I-beams, considering different load cases and initial crack configurations, are carried out by employing the three-dimensional SGBEM (Symmetric Galerkin Boundary Element Method)–FEM (Finite Element Method) Alternating Method. For mode-...
متن کاملCombining SGBEM and FEM for modeling 3D cracks
The SGBEM-FEM alternating method suitable for the solution of elastic and elasticplastic three-dimensional fracture mechanics problems is presented. The crack is modeled by the symmetric Galerkin boundary element method (SGBEM), as a distribution of displacement discontinuities in an infinite medium. The finite element method (FEM) is used for stress analysis of the uncracked finite body. The s...
متن کامل